On Selkow's bound on the independence number of graphs
                    
                        
                            نویسندگان
                            
                            
                        
                        
                    
                    
                    چکیده
منابع مشابه
A new lower bound on the independence number of graphs
We propose a new lower bound on the independence number of a graph. We show that our bound compares favorably to recent ones (e.g. [12]). We obtain our bound by using the Bhatia-Davis inequality applied with analytical results (minimum, maximum, expectation and variance) of an algorithm for the vertex cover problem.
متن کاملOn the k-independence number in graphs
For an integer k ≥ 1 and a graph G = (V,E), a subset S of V is kindependent if every vertex in S has at most k − 1 neighbors in S. The k-independent number βk(G) is the maximum cardinality of a kindependent set of G. In this work, we study relations between βk(G), βj(G) and the domination number γ(G) in a graph G where 1 ≤ j < k. Also we give some characterizations of extremal graphs.
متن کاملsurvey on the rule of the due & hindering relying on the sheikh ansaris ideas
قاعده مقتضی و مانع در متون فقهی کم و بیش مستند احکام قرار گرفته و مورد مناقشه فقهاء و اصولیین می باشد و مشهور معتقند مقتضی و مانع، قاعده نیست بلکه یکی از مسائل ذیل استصحاب است لذا نگارنده بر آن شد تا پیرامون این قاعده پژوهش جامعی انجام دهد. به عقیده ما مقتضی دارای حیثیت مستقلی است و هر گاه می گوییم مقتضی احراز شد یعنی با ماهیت مستقل خودش محرز گشته و قطعا اقتضاء خود را خواهد داشت مانند نکاح که ...
15 صفحه اولOn the fixed number of graphs
A set of vertices $S$ of a graph $G$ is called a fixing set of $G$, if only the trivial automorphism of $G$ fixes every vertex in $S$. The fixing number of a graph is the smallest cardinality of a fixing set. The fixed number of a graph $G$ is the minimum $k$, such that every $k$-set of vertices of $G$ is a fixing set of $G$. A graph $G$ is called a $k$-fixed graph, if its fix...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discussiones Mathematicae Graph Theory
سال: 2019
ISSN: 1234-3099,2083-5892
DOI: 10.7151/dmgt.2100